Yaguang Zheng

Faculty

Yaguang Zheng Headshot

Yaguang Zheng

PhD RN

Assistant Professor

1 212 998 5170

433 FIRST AVENUE
NEW YORK, NY 10016
United States

Accepting PhD students

Yaguang Zheng's additional information

Yaguang Zheng is an assistant professor at NYU Rory Meyers College of Nursing. Her research focuses on cardiometabolic risk reduction by leveraging mobile health, electronic health records, and data science techniques. Zheng has explored behavioral phenotypes through the use of wireless devices in clinical trials and real-world settings and their impacts on cardiometabolic disease prevention and management. Zheng’s initial work focused on lifestyle behavior changes through mobile health, more specifically, using mobile health for self-monitoring and its impact on weight-loss outcomes. After identifying a critical knowledge gap in the area of engagement with mobile health, Zheng conducted a pilot study that found that older adults were able to use multiple mobile devices to improve diabetes self-management, debunking traditional perceptions of older adults as being skeptical of multiple mobile technologies.

Zheng has also applied machine learning algorithms to analyze data from a large real-world sample that has yielded varied patterns of use of wireless devices over the course of a year, findings which are helping to target subgroups of individuals who need long-term engagement in using mobile health devices. More recently, Zheng has worked on electronic health record data, including mobile health data from wearable devices, like continuous glucose monitors, which has real-world application for clinical practice.

Prior to joining the NYU Rory Meyers faculty, Zheng was a postdoctoral scholar supported by NIH grant T32 NR008857 Technology: Research in Chronic and Critical Illness at the University of Pittsburgh School of Nursing.

Zheng earned her PhD at the University of Pittsburgh. She also received a Nursing Informatics Certificate during her postdoctoral training.  

PhD, Nursing - University of Pittsburgh

Obesity
Diabetes
Chronic disease
Informatics

American Medical Informatics Association
American Heart Association
American Diabetes Association

Faculty Honors Awards

Post-doctoral trainee, Technology: Research in Chronic and Critical Illness (T32 NR008857) (2020)
Ruth Perkins Kuehn Scholarship, Sigma Theta Tau, Eta Chapter (2014)
New Investigator Travel Award, American Heart Association EPI/NPAM 2014 Scientific Sessions (2014)

Publications

Age differences in the effects of multi-component periodontal treatments on oral and metabolic health among people with diabetes mellitus: A meta-epidemiological study

Zhu, Z., Qi, X., Zheng, Y., Pei, Y., & Wu, B. (2023). Journal of Dentistry, 135, 104594. 10.1016/j.jdent.2023.104594
Abstract
Abstract
OBJECTIVE: To explore the age differences in the effects of multi-component periodontal treatments on oral and metabolic indicators among individuals with periodontitis and diabetes.DATA: Trials reporting the effects of multi-component periodontal treatments on oral and metabolic indicators among participants aged 18 and above with periodontitis and diabetes were included.SOURCES: Six databases (PubMed/Medline, Embase, CINHAL, Web of Science, Cochrane Library, and ProQuest) were searched from database inception to August 2022.STUDY SELECTION: Two reviewers selected the included studies independently. We used bivariate and multivariate meta-regression models to examine the association between age and treatment effect size. The primary outcomes were changes in probing depth (PD), clinical attachment level (CAL), and hemoglobin A1c (HbA1c).RESULTS: A total of 18,067 articles were identified in the database search. Of these, 115 trials (119 articles) met inclusion criteria. The mean age of participants was 58 years old, ranging from 35 to 73 years. The pooled evidence demonstrated that multi-component periodontal treatment significantly reduced PD (g=0.929 [0.689-1.169], I2=94.1%), CAL (g=0.879 [0.669-1.089], I2=92.1%), and HbA1c (g=0.603 [0.443-0.763], I2=87.5%). A significant decreasing trend was observed in the effect size for PD (P for trend = 0.020) and CAL (P for trend = 0.028) as age increases. Results from multivariate meta-regression showed that mean age was associated with a smaller effect size for PD (β=-0.123 [0.041], P = 0.004) and CAL (β=-0.159 [0.055], P = 0.006). Compared to their younger counterparts, the effect size for HbA1c was smaller among participants aged 55 and older (β=-0.792 [0.322], P = 0.017).CONCLUSIONS: Multi-component periodontal treatments may be more effective in younger populations in terms of effects on PD, CAL, and HbA1c.CLINICAL SIGNIFICANCE: Our study highlights the importance of early intervention and tailored treatment approaches. Clinicians should take into account the patient's age when developing periodontal treatment plans and may need to employ more aggressive or personalized strategies for older adults to achieve optimal outcomes.

Dietary Self-Management Using Mobile Health Technology for Adults With Type 2 Diabetes: A Scoping Review

Zheng, Y., Campbell Rice, B., Melkus, G. D., Sun, M., Zweig, S., Jia, W., Parekh, N., He, H., Zhang, Y. L., & Wylie-Rosett, J. (2023). Journal of Diabetes Science and Technology, 17(5), 1212-1225. 10.1177/19322968231174038
Abstract
Abstract
Objective: Dietary self-management is one key component to achieve optimal glycemic control. Advances in mobile health (mHealth) technology have reduced the burden of diabetes self-management; however, limited evidence has been known regarding the status of the current body of research using mHealth technology for dietary management for adults with type 2 diabetes. Methods: Literature searches were conducted electronically using PubMed, CINAHL (EBSCO), Web of Science Core Collection, PsycINFO (Ovid), EMBASE (Ovid), and Scopus. Keywords and subject headings covered dietary management, type 2 diabetes, and mHealth. Inclusion criteria included studies that applied mHealth for dietary self-management for adults with type 2 diabetes and were published in English as full articles. Results: This review (N = 15 studies) revealed heterogeneity of the mHealth-based dietary self-management or interventions and reported results related to physiological, dietary behavioral, and psychosocial outcomes. Twelve studies applied smartphone apps with varied functions for dietary management or intervention, while three studies applied continuous glucose monitoring (CGM) to guide dietary changes. Among 15 reviewed studies, only three of them were two-arm randomized clinical trial (RCT) with larger sample and 12-month study duration and 12 of them were pilot testing. Nine of 12 pilot studies showed improved HbA1c; most of them resulted in varied dietary changes; and few of them showed improved diabetes distress and depression. Conclusion: Our review provided evidence that the application of mHealth technology for dietary intervention for adults with type 2 diabetes is still in pilot testing. The preliminary effects are inconclusive on physiological, dietary behavioral, and psychosocial outcomes.

Examining reactivity to intensive longitudinal ecological momentary assessment: 12-month prospective study

Cajita, M. I., Rathbun, S. L., Shiffman, S., Kline, C. E., Imes, C. C., Zheng, Y., Ewing, L. J., & Burke, L. E. (2023). Eating and Weight Disorders, 28(1), 1-5. 10.1007/s40519-023-01556-1
Abstract
Abstract
PurposeTo examine the association between intensive, longitudinal ecological momentary assessment (EMA) and self-reported eating behaviors.MethodsSecondary analysis of the EMPOWER study—a 12-month observational study that examined the microprocesses of relapse following intentional weight loss using smartphone-administered EMA—was conducted. Participants were asked to complete four types of EMA surveys using a mobile app. For this analysis, only the number of completed random EMA surveys was used. Using linear mixed-effects modeling, we analyzed whether the number of completed random EMA surveys was associated with changes in self-reported dietary restraint, dietary disinhibition, and susceptibility to hunger measured using the Three-Factor Eating Questionnaire (TFEQ).ResultsDuring the 12-month study, 132 participants completed a mean of 1062 random EMA surveys (range: 673–1362). The median time it took for participants to complete random EMA surveys was 20 s and 90% of random EMA surveys were completed within 46 s. The number of completed random EMA surveys was not significantly associated with the TFEQ scores.ConclusionsIntensive longitudinal EMA did not influence self-reported eating behaviors. The findings suggest that EMA can be used to frequently assess real-world eating behaviors with minimal concern about assessment reactivity. Nonetheless, care must be taken when designing EMA surveys—particularly when using self-reported outcome measures.

Interindividual Variability in Self-Monitoring of Blood Pressure Using Consumer-Purchased Wireless Devices

Zheng, Y., Zhang, Y., Huang, H., Tison, G. H., Burke, L. E., Blecker, S., Dickson, V. V., Olgin, J. E., Marcus, G. M., & Pletcher, M. J. (2023). Nursing Research, 72(4), 310-318. 10.1097/NNR.0000000000000654
Abstract
Abstract
BACKGROUND: Engagement with self-monitoring of blood pressure (BP) declines, on average, over time but may vary substantially by individual.OBJECTIVES: We aimed to describe different 1-year patterns (groups) of self-monitoring of BP behaviors, identify predictors of those groups, and examine the association of self-monitoring of BP groups with BP levels over time.METHODS: We analyzed device-recorded BP measurements collected by the Health eHeart Study-an ongoing prospective eCohort study-from participants with a wireless consumer-purchased device that transmitted date- and time-stamped BP data to the study through a full 12 months of observation starting from the first day they used the device. Participants received no instruction on device use. We applied clustering analysis to identify 1-year self-monitoring, of BP patterns.RESULTS: Participants had a mean age of 52 years and were male and White. Using clustering algorithms, we found that a model with three groups fit the data well: persistent daily use (9.1% of participants), persistent weekly use (21.2%), and sporadic use only (69.7%). Persistent daily use was more common among older participants who had higher Week 1 self-monitoring of BP frequency and was associated with lower BP levels than the persistent weekly use or sporadic use groups throughout the year.CONCLUSION: We identified three distinct self-monitoring of BP groups, with nearly 10% sustaining a daily use pattern associated with lower BP levels.

Associations Between Implementation of the Caregiver Advise Record Enable (CARE) Act and Health Service Utilization for Older Adults with Diabetes: Retrospective Observational Study

Zheng, Y., Anton, B. B., Rodakowski, J., Dunn, S. C. A., Fields, B., Hodges, J. C., Donovan, H., Feiler, C., Martsolf, G. R., Bilderback, A., Martin, S. C., Li, D., & James, A. E. (2022). JMIR Aging, 5(2). 10.2196/32790
Abstract
Abstract
Background: The Caregiver Advise Record Enable (CARE) Act is a state level law that requires hospitals to identify and educate caregivers ("family members or friends") upon discharge.Objective: This study examined the association between the implementation of the CARE Act in a Pennsylvania health system and health service utilization (ie, reducing hospital readmission, emergency department [ED] visits, and mortality) for older adults with diabetes.Methods: The key elements of the CARE Act were implemented and applied to the patients discharged to home. The data between May and October 2017 were pulled from inpatient electronic health records. Likelihood-ratio chi-square tests and multivariate logistic regression models were used for statistical analysis.Results: The sample consisted of 2591 older inpatients with diabetes with a mean age of 74.6 (SD 7.1) years. Of the 2591 patients, 46.1% (n=1194) were female, 86.9% (n=2251) were White, 97.4% (n=2523) had type 2 diabetes, and 69.5% (n=1801) identified a caregiver. Of the 1801 caregivers identified, 399 (22.2%) received discharge education and training. We compared the differences in health service utilization between pre- and postimplementation of the CARE Act; however, no significance was found. No significant differences were detected from the bivariate analyses in any outcomes between individuals who identified a caregiver and those who declined to identify a caregiver. After adjusting for risk factors (multivariate analysis), those who identified a caregiver (12.2%, 219/1801) was associated with higher rates of 30-day hospital readmission than those who declined to identify a caregiver (9.9%, 78/790; odds ratio [OR] 1.38, 95% CI 1.04-1.87; P=.02). Significantly lower rates were detected in 7-day readmission (P=.02), as well as 7-day (P=.03) and 30-day (P=.01) ED visits, among patients with diabetes whose identified caregiver received education and training than those whose identified caregiver did not receive education and training in the bivariate analyses. However, after adjusting for risk factors, no significance was found in 7-day readmission (OR 0.53, 95% CI 0.27-1.05; P=.07), 7-day ED visit (OR 0.63, 95% CI 0.38-1.03; P=.07), and 30-day ED visit (OR 0.73, 95% CI 0.52-1.02; P=.07). No significant associations were found for other outcomes (ie, 30-day readmission and 7-day and 30-day mortality) in both the bivariate and multivariate analyses.Conclusions: Our study found that the implementation of the CARE Act was associated with certain health service utilization. The identification of caregivers was associated with higher rates of 30-day hospital readmission in the multivariate analysis, whereas having identified caregivers who received discharge education was associated with lower rates of readmission and ED visit in the bivariate analysis.

Exercise and Self‑Management in Adults with Type 1 Diabetes

McCarthy, M. M., Ilkowitz, J. R., Zheng, Y., & Vaughan Dickson, V. (2022). Current Cardiology Reports, 24(7), 861-868. 10.1007/s11886-022-01707-3
Abstract
Abstract
Purpose of Review: The purpose of this review paper is to examine the most recent evidence of exercise-related self-management in adults with type 1 diabetes (T1D). Recent Findings: This paper reviews the benefits and barriers to exercise, diabetes self-management education, the role of the healthcare provider in assessment and counseling, the use of technology, and concerns for special populations with T1D. Summary: Adults with T1D may not exercise at sufficient levels. Assessing current levels of exercise, counseling during a clinical visit, and the use of technology may improve exercise in this population.

Identifying Patients with Hypoglycemia Using Natural Language Processing: Systematic Literature Review

Zheng, Y., Dickson, V. V., Blecker, S., Ng, J. M., Rice, B. C., Melkus, G. D., Shenkar, L., Mortejo, M. C. R., & Johnson, S. B. (2022). JMIR Diabetes, 7(2). 10.2196/34681
Abstract
Abstract
Background: Accurately identifying patients with hypoglycemia is key to preventing adverse events and mortality. Natural language processing (NLP), a form of artificial intelligence, uses computational algorithms to extract information from text data. NLP is a scalable, efficient, and quick method to extract hypoglycemia-related information when using electronic health record data sources from a large population. Objective: The objective of this systematic review was to synthesize the literature on the application of NLP to extract hypoglycemia from electronic health record clinical notes. Methods: Literature searches were conducted electronically in PubMed, Web of Science Core Collection, CINAHL (EBSCO), PsycINFO (Ovid), IEEE Xplore, Google Scholar, and ACL Anthology. Keywords included hypoglycemia, low blood glucose, NLP, and machine learning. Inclusion criteria included studies that applied NLP to identify hypoglycemia, reported the outcomes related to hypoglycemia, and were published in English as full papers. Results: This review (n=8 studies) revealed heterogeneity of the reported results related to hypoglycemia. Of the 8 included studies, 4 (50%) reported that the prevalence rate of any level of hypoglycemia was 3.4% to 46.2%. The use of NLP to analyze clinical notes improved the capture of undocumented or missed hypoglycemic events using International Classification of Diseases, Ninth Revision (ICD-9), and International Classification of Diseases, Tenth Revision (ICD-10), and laboratory testing. The combination of NLP and ICD-9 or ICD-10 codes significantly increased the identification of hypoglycemic events compared with individual methods; for example, the prevalence rates of hypoglycemia were 12.4% for International Classification of Diseases codes, 25.1% for an NLP algorithm, and 32.2% for combined algorithms. All the reviewed studies applied rule-based NLP algorithms to identify hypoglycemia. Conclusions: The findings provided evidence that the application of NLP to analyze clinical notes improved the capture of hypoglycemic events, particularly when combined with the ICD-9 or ICD-10 codes and laboratory testing.

Nightly Variation in Sleep Influences Self-efficacy for Adhering to a Healthy Lifestyle: A Prospective Study

Burke, L. E., Kline, C. E., Mendez, D. D., Shiffman, S., Chasens, E. R., Zheng, Y., Imes, C. C., Cajita, M. I., Ewing, L., Goode, R., Mattos, M., Kariuki, J. K., Kriska, A., & Rathbun, S. L. (2022). International Journal of Behavioral Medicine, 29(3), 377-386. 10.1007/s12529-021-10022-0
Abstract
Abstract
Background: Self-efficacy, or the perceived capability to engage in a behavior, has been shown to play an important role in adhering to weight loss treatment. Given that adherence is extremely important for successful weight loss outcomes and that sleep and self-efficacy are modifiable factors in this relationship, we examined the association between sleep and self-efficacy for adhering to the daily plan. Investigators examined whether various dimensions of sleep were associated with self-efficacy for adhering to the daily recommended lifestyle plan among participants (N = 150) in a 12-month weight loss study. Method: This study was a secondary analysis of data from a 12-month prospective observational study that included a standard behavioral weight loss intervention. Daily assessments at the beginning of day (BOD) of self-efficacy and the previous night’s sleep were collected in real-time using ecological momentary assessment. Results: The analysis included 44,613 BOD assessments. On average, participants reported sleeping for 6.93 ± 1.28 h, reported 1.56 ± 3.54 awakenings, and gave low ratings for trouble sleeping (3.11 ± 2.58; 0: no trouble; 10: a lot of trouble) and mid-high ratings for sleep quality (6.45 ± 2.09; 0: poor; 10: excellent). Participants woke up feeling tired 41.7% of the time. Using linear mixed effects modeling, a better rating in each sleep dimension was associated with higher self-efficacy the following day (all p values <.001). Conclusion: Our findings supported the hypothesis that better sleep would be associated with higher levels of reported self-efficacy for adhering to the healthy lifestyle plan.

Applying Real-World Data to Inform Continuous Glucose Monitoring Use in Clinical Practice

Zheng, Y., Siminerio, L. M., Krall, J., Anton, B. B., Hodges, J. C., Bednarz, L., Li, D., & Ng, J. M. (2021). Journal of Diabetes Science and Technology, 15(4), 968-969. 10.1177/1932296821997403

mHealth Technology and CVD Risk Reduction

Cajita, M. I., Zheng, Y., Kariuki, J. K., Vuckovic, K. M., & Burke, L. E. (2021). Current Atherosclerosis Reports, 23(7), 36. 10.1007/s11883-021-00927-2
Abstract
Abstract
PURPOSE OF REVIEW: To review existing mHealth-based interventions and examine their efficacy in reducing cardiovascular disease (CVD) risk factors.RECENT FINDINGS: A total of 50 articles are included in this review. The majority of the mHealth interventions targeted a specific CVD risk factor, while 4 addressed 2 or more CVD risk factors. Of the 9 mHealth-supported weight loss intervention trials, 4 resulted in significant weight loss. Four out of 7 RCTs targeting improvement in physical activity reported significant improvement, while 4 of the 8 mHealth-supported smoking cessation intervention trials resulted in smoking abstinence. Of the 10 mHealth-based diabetes intervention trials, 5 reported significant reductions in HbA1c; however, only 3 out of the 9 antihypertension interventions resulted in significant reductions in blood pressure. There is a growing body of literature focused on mHealth interventions that address CVD risk factors. Despite the immense potential of mHealth interventions, evidence of their efficacy in mitigating cardiovascular risk is heterogeneous.