Yaguang Zheng
PhD RN
Assistant Professor
yaguang.zheng@nyu.edu
1 212 998 5170
433 FIRST AVENUE
NEW YORK, NY 10010
United States
Yaguang Zheng's additional information
-
-
Yaguang Zheng is an Assistant Professor at NYU Rory Meyers College of Nursing. Her research focuses on cardiometabolic risk reduction by leveraging mobile health, electronic health records, and data science techniques. Prof. Zheng has explored behavioral phenotypes through the use of wireless devices in clinical trials and real-world settings and their impacts on cardiometabolic disease prevention and management. Zheng’s initial work focused on lifestyle behavior changes through mobile health, more specifically, using mobile health for self-monitoring and its impact on weight-loss outcomes. After identifying a critical knowledge gap in the area of engagement with mobile health, Zheng conducted a pilot study that found that older adults were able to use multiple mobile devices to improve diabetes self-management, debunking traditional perceptions of older adults as being skeptical of multiple mobile technologies.
Zheng has also applied machine learning algorithms to analyze data from a large real-world sample that has yielded varied patterns of use of wireless devices over the course of a year, findings which are helping to target subgroups of individuals who need long-term engagement in using mobile health devices. More recently, Zheng has worked on electronic health record data, including mobile health data from wearable devices, like continuous glucose monitors, which has real-world application for clinical practice.
Prior to joining the NYU Meyers faculty, Zheng was a postdoctoral scholar supported by NIH grant T32 NR008857 Technology: Research in Chronic and Critical Illness at the University of Pittsburgh School of Nursing.
-
-
PhD in Nursing, University of Pittsburgh
-
-
Chronic diseaseDiabetesInformaticsObesity
-
-
American Medical Informatics AssociationAmerican Heart AssociationAmerican Diabetes Association
-
-
Faculty Honors Awards
Post-doctoral trainee, Technology: Research in Chronic and Critical Illness (T32 NR008857) (2020)New Investigator Travel Award, American Heart Association EPI/NPAM 2014 Scientific Sessions (2014)Ruth Perkins Kuehn Scholarship, Sigma Theta Tau, Eta Chapter (2014) -
-
Publications
Mechanisms of Change in Cognitive Function Domains Among Older Adults in Cognitive Deterioration and Improvement Groups : Evidence From Phenotypic Network Structure
AbstractZhu, Z., Zwerling, J. L., Qi, X., Pei, Y., Zheng, Y., & Wu, B. (2023). In Journal of the American Medical Directors Association. 10.1016/j.jamda.2023.08.022AbstractOBJECTIVE: To investigate how cognitive function domains change in phenotypic networks in cognitive deterioration and improvement groups.DESIGN: Secondary data analysis.SETTING AND PARTICIPANTS: Respondents in the Aging, Demographics, and Memory Study (ADAMS) who were 70 years or older at the time of the data collection in 2000 or 2002.METHODS: This study used data from the ADAMS in Wave A and Wave B. We assessed 12 cognitive function domains. Latent profile transition analysis (LPTA) and the cross-lagged panel network model were used to the dynamic interactions of the 12 cognitive function domains over time in both the deterioration and improvement groups.RESULTS: A total of 252 participants were included in the final analysis. LPTA identified 5 subgroups and categorized all samples into 3 main categories: improvement group (n = 61), deterioration group (n = 54), and no change group (n = 137). "D9: psychomotor processing" showed the largest value of out-strength in the deterioration group (r = 0.941) and improvement group (r = 0.969). The strongest direct positive effect in the deterioration group was "C9: psychomotor processing" -> "C8: attention" (β = 0.39 [0.00, 1.13]). In the improvement group, the strongest direct positive effect was "C9 = psychomotor processing" -> "C7 = visual memory" (β = 0.69 [0.07, 1.30]).CONCLUSION AND IMPLICATIONS: Psychomotor processing affected other cognitive domains, and it played a crucial role in changes of cognitive function. The paths of psychomotor processing to attention and visual memory were found to be major factors in cognitive deterioration and improvement. Targeting psychomotor processing may lead to the development of more effective and precise interventions.Mechanisms of Change in Cognitive Function Domains Among Older Adults in Cognitive Deterioration and Improvement Groups: Evidence From Phenotypic Network Structure
AbstractZhu, Z., Zwerling, J. L., Qi, X., Pei, Y., Zheng, Y., & Wu, B. (2023). In Journal of the American Medical Directors Association (Vols. 24, Issues 12, pp. 2009-2016).Abstract~Neighborhood-Level Socioeconomic Status and Prescription Fill Patterns Among Patients With Heart Failure
AbstractMukhopadhyay, A., Blecker, S., Li, X., Kronish, I. M., Chunara, R., Chunara, R., Zheng, Y., Lawrence, S., Dodson, J. A., Kozloff, S., & Adhikari, S. (2023). In JAMA network open (Vols. 6, Issues 12, p. e2347519). 10.1001/jamanetworkopen.2023.47519AbstractIMPORTANCE: Medication nonadherence is common among patients with heart failure with reduced ejection fraction (HFrEF) and can lead to increased hospitalization and mortality. Patients living in socioeconomically disadvantaged areas may be at greater risk for medication nonadherence due to barriers such as lower access to transportation or pharmacies.OBJECTIVE: To examine the association between neighborhood-level socioeconomic status (nSES) and medication nonadherence among patients with HFrEF and to assess the mediating roles of access to transportation, walkability, and pharmacy density.DESIGN, SETTING, AND PARTICIPANTS: This retrospective cohort study was conducted between June 30, 2020, and December 31, 2021, at a large health system based primarily in New York City and surrounding areas. Adult patients with a diagnosis of HF, reduced EF on echocardiogram, and a prescription of at least 1 guideline-directed medical therapy (GDMT) for HFrEF were included.EXPOSURE: Patient addresses were geocoded, and nSES was calculated using the Agency for Healthcare Research and Quality SES index, which combines census-tract level measures of poverty, rent burden, unemployment, crowding, home value, and education, with higher values indicating higher nSES.MAIN OUTCOMES AND MEASURES: Medication nonadherence was obtained through linkage of health record prescription data with pharmacy fill data and was defined as proportion of days covered (PDC) of less than 80% over 6 months, averaged across GDMT medications.RESULTS: Among 6247 patients, the mean (SD) age was 73 (14) years, and majority were male (4340 [69.5%]). There were 1011 (16.2%) Black participants, 735 (11.8%) Hispanic/Latinx participants, and 3929 (62.9%) White participants. Patients in lower nSES areas had higher rates of nonadherence, ranging from 51.7% in the lowest quartile (731 of 1086 participants) to 40.0% in the highest quartile (563 of 1086 participants) (P < .001). In adjusted analysis, patients living in the lower 2 nSES quartiles had significantly higher odds of nonadherence when compared with patients living in the highest nSES quartile (quartile 1: odds ratio [OR], 1.57 [95% CI, 1.35-1.83]; quartile 2: OR, 1.35 [95% CI, 1.16-1.56]). No mediation by access to transportation and pharmacy density was found, but a small amount of mediation by neighborhood walkability was observed.CONCLUSIONS AND RELEVANCE: In this retrospective cohort study of patients with HFrEF, living in a lower nSES area was associated with higher rates of GDMT nonadherence. These findings highlight the importance of considering neighborhood-level disparities when developing approaches to improve medication adherence.Prevalence and Incidence of Mild Cognitive Impairment in Adults with Diabetes in the United States
AbstractZheng, Y., Ma, Q., Qi, X., Zhu, Z., & Wu, B. (2023). In Diabetes Research and Clinical Practice (p. 110976). 10.1016/j.diabres.2023.110976AbstractBACKGROUND: Limited evidence exists about the prevalence and incidence of mild cognitive impairment (MCI) in individuals with diabetes in the U.S. We aimed to address such knowledge gaps using a nationally representative study dataset.METHOD: We conducted a secondary analysis from the Health and Retirement Study (HRS) (1996-2018). The sample for examining the prevalence of MCI was14,988, with 4,192 (28.0%) having diabetes, while the sample for the incidence was 21,824, with 1,534 (28.0%) having diabetes.RESULTS: Participants with diabetes had a higher prevalence of MCI than those without diabetes (19.9% vs. 14.8%; odds ratio [95% confidence interval] (OR[95%CI]): 1.468 [1.337, 1.611], pPrevalence and incidence of mild cognitive impairment in adults with diabetes in the United States
AbstractZheng, Y., Ma, Q., Qi, X., Zhu, Z., & Wu, B. (2023). In Diabetes Research and Clinical Practice (Vols. 205).Abstract~Associations Between Implementation of the Caregiver Advise Record Enable (CARE) Act and Health Service Utilization for Older Adults with Diabetes: Retrospective Observational Study
AbstractZheng, Y., Anton, B. B., Rodakowski, J., Dunn, S. C., Fields, B., Hodges, J. C., Donovan, H., Feiler, C., Martsolf, G. R., Bilderback, A., Martin, S. C., Li, D., & James, A. E. (2022). In JMIR Aging (Vols. 5, Issues 2). 10.2196/32790AbstractBackground: The Caregiver Advise Record Enable (CARE) Act is a state level law that requires hospitals to identify and educate caregivers ("family members or friends") upon discharge.Objective: This study examined the association between the implementation of the CARE Act in a Pennsylvania health system and health service utilization (ie, reducing hospital readmission, emergency department [ED] visits, and mortality) for older adults with diabetes.Methods: The key elements of the CARE Act were implemented and applied to the patients discharged to home. The data between May and October 2017 were pulled from inpatient electronic health records. Likelihood-ratio chi-square tests and multivariate logistic regression models were used for statistical analysis.Results: The sample consisted of 2591 older inpatients with diabetes with a mean age of 74.6 (SD 7.1) years. Of the 2591 patients, 46.1% (n=1194) were female, 86.9% (n=2251) were White, 97.4% (n=2523) had type 2 diabetes, and 69.5% (n=1801) identified a caregiver. Of the 1801 caregivers identified, 399 (22.2%) received discharge education and training. We compared the differences in health service utilization between pre- and postimplementation of the CARE Act; however, no significance was found. No significant differences were detected from the bivariate analyses in any outcomes between individuals who identified a caregiver and those who declined to identify a caregiver. After adjusting for risk factors (multivariate analysis), those who identified a caregiver (12.2%, 219/1801) was associated with higher rates of 30-day hospital readmission than those who declined to identify a caregiver (9.9%, 78/790; odds ratio [OR] 1.38, 95% CI 1.04-1.87; P=.02). Significantly lower rates were detected in 7-day readmission (P=.02), as well as 7-day (P=.03) and 30-day (P=.01) ED visits, among patients with diabetes whose identified caregiver received education and training than those whose identified caregiver did not receive education and training in the bivariate analyses. However, after adjusting for risk factors, no significance was found in 7-day readmission (OR 0.53, 95% CI 0.27-1.05; P=.07), 7-day ED visit (OR 0.63, 95% CI 0.38-1.03; P=.07), and 30-day ED visit (OR 0.73, 95% CI 0.52-1.02; P=.07). No significant associations were found for other outcomes (ie, 30-day readmission and 7-day and 30-day mortality) in both the bivariate and multivariate analyses.Conclusions: Our study found that the implementation of the CARE Act was associated with certain health service utilization. The identification of caregivers was associated with higher rates of 30-day hospital readmission in the multivariate analysis, whereas having identified caregivers who received discharge education was associated with lower rates of readmission and ED visit in the bivariate analysis.Exercise and Self‑Management in Adults with Type 1 Diabetes
AbstractMcCarthy, M. M., Ilkowitz, J. R., Zheng, Y., & Vaughan Dickson, V. (2022). In Current Cardiology Reports (Vols. 24, Issues 7, pp. 861-868). 10.1007/s11886-022-01707-3AbstractPurpose of Review: The purpose of this review paper is to examine the most recent evidence of exercise-related self-management in adults with type 1 diabetes (T1D). Recent Findings: This paper reviews the benefits and barriers to exercise, diabetes self-management education, the role of the healthcare provider in assessment and counseling, the use of technology, and concerns for special populations with T1D. Summary: Adults with T1D may not exercise at sufficient levels. Assessing current levels of exercise, counseling during a clinical visit, and the use of technology may improve exercise in this population.Identifying Patients with Hypoglycemia Using Natural Language Processing : Systematic Literature Review
AbstractZheng, Y., Dickson, V. V., Blecker, S., Ng, J. M., Rice, B. C., Melkus, G. D., Shenkar, L., Mortejo, M. C., & Johnson, S. B. (2022). In JMIR Diabetes (Vols. 7, Issues 2). 10.2196/34681AbstractBackground: Accurately identifying patients with hypoglycemia is key to preventing adverse events and mortality. Natural language processing (NLP), a form of artificial intelligence, uses computational algorithms to extract information from text data. NLP is a scalable, efficient, and quick method to extract hypoglycemia-related information when using electronic health record data sources from a large population. Objective: The objective of this systematic review was to synthesize the literature on the application of NLP to extract hypoglycemia from electronic health record clinical notes. Methods: Literature searches were conducted electronically in PubMed, Web of Science Core Collection, CINAHL (EBSCO), PsycINFO (Ovid), IEEE Xplore, Google Scholar, and ACL Anthology. Keywords included hypoglycemia, low blood glucose, NLP, and machine learning. Inclusion criteria included studies that applied NLP to identify hypoglycemia, reported the outcomes related to hypoglycemia, and were published in English as full papers. Results: This review (n=8 studies) revealed heterogeneity of the reported results related to hypoglycemia. Of the 8 included studies, 4 (50%) reported that the prevalence rate of any level of hypoglycemia was 3.4% to 46.2%. The use of NLP to analyze clinical notes improved the capture of undocumented or missed hypoglycemic events using International Classification of Diseases, Ninth Revision (ICD-9), and International Classification of Diseases, Tenth Revision (ICD-10), and laboratory testing. The combination of NLP and ICD-9 or ICD-10 codes significantly increased the identification of hypoglycemic events compared with individual methods; for example, the prevalence rates of hypoglycemia were 12.4% for International Classification of Diseases codes, 25.1% for an NLP algorithm, and 32.2% for combined algorithms. All the reviewed studies applied rule-based NLP algorithms to identify hypoglycemia. Conclusions: The findings provided evidence that the application of NLP to analyze clinical notes improved the capture of hypoglycemic events, particularly when combined with the ICD-9 or ICD-10 codes and laboratory testing.Nightly Variation in Sleep Influences Self-efficacy for Adhering to a Healthy Lifestyle : A Prospective Study
AbstractBurke, L. E., Kline, C. E., Mendez, D. D., Shiffman, S., Chasens, E. R., Zheng, Y., Imes, C. C., Cajita, M. I., Ewing, L., Goode, R., Mattos, M., Kariuki, J. K., Kriska, A., & Rathbun, S. L. (2022). In International Journal of Behavioral Medicine (Vols. 29, Issues 3, pp. 377-386). 10.1007/s12529-021-10022-0AbstractBackground: Self-efficacy, or the perceived capability to engage in a behavior, has been shown to play an important role in adhering to weight loss treatment. Given that adherence is extremely important for successful weight loss outcomes and that sleep and self-efficacy are modifiable factors in this relationship, we examined the association between sleep and self-efficacy for adhering to the daily plan. Investigators examined whether various dimensions of sleep were associated with self-efficacy for adhering to the daily recommended lifestyle plan among participants (N = 150) in a 12-month weight loss study. Method: This study was a secondary analysis of data from a 12-month prospective observational study that included a standard behavioral weight loss intervention. Daily assessments at the beginning of day (BOD) of self-efficacy and the previous night’s sleep were collected in real-time using ecological momentary assessment. Results: The analysis included 44,613 BOD assessments. On average, participants reported sleeping for 6.93 ± 1.28 h, reported 1.56 ± 3.54 awakenings, and gave low ratings for trouble sleeping (3.11 ± 2.58; 0: no trouble; 10: a lot of trouble) and mid-high ratings for sleep quality (6.45 ± 2.09; 0: poor; 10: excellent). Participants woke up feeling tired 41.7% of the time. Using linear mixed effects modeling, a better rating in each sleep dimension was associated with higher self-efficacy the following day (all p valuesApplying Real-World Data to Inform Continuous Glucose Monitoring Use in Clinical Practice
AbstractZheng, Y., Siminerio, L. M., Krall, J., Anton, B. B., Hodges, J. C., Bednarz, L., Li, D., & Ng, J. M. (2021). In Journal of diabetes science and technology (Vols. 15, Issues 4, pp. 968-969). 10.1177/1932296821997403Abstract~ -
-
Media
-